library(che302r)
Loading required package: orthopolynom
library(che302r)
Loading required package: orthopolynom
<- 3e-3
lam <- h/lam
pN # momentum of neutron pN
[1] 2.20869e-31
<- pN/mN
vN # speed of neutron vN
[1] 0.0001318678
<- 350e-9
lam <- h/lam
pph # momentum of photon pph
[1] 1.893163e-27
<- 2*mP + 2*me
mH2 # mass of hydrogen molecule mH2
[1] 3.347066e-27
<- pph # hydrogen molecule momentum is same as photon momentum
pH2 <- pH2/mH2
vH2 # speed of hydrogen molecule vH2
[1] 0.5656187
<- 1000
dv <- mP*dv
dp # uncertainty in momentum dp
[1] 1.672622e-24
<- hb/(2*dp)
dx # uncertainty in position dx
[1] 3.152451e-11
<- 525e-9
lam <- h * cl/lam
Eph # Energy per photon Eph
[1] 3.783706e-19
# 500 W laser on for 10 s
<- 500 * (1/Eph) * 10
ph # number of photons spit out in 10s ph
[1] 1.321456e+22
/N.A # mols of photons ph
[1] 0.02194329
# a.
<- 5e6
laser.pow <- 2e-8
pulse.time * pulse.time laser.pow
[1] 0.1
#b.
<- 1064e-9
lam <- h * cl/lam
Eph # Energy per photon Eph
[1] 1.86696e-19
# **** alternative solution for a. since we now know the energy per photon from b. ****
# 5e6 W laser on for 2e-8 s
<- 5e6 * (1/Eph) * 2e-8
ph # number of photons spit out in 2e-8 s pulse ph
[1] 5.3563e+17
* ph # Energy in the 2e-8 s pulse Eph
[1] 0.1
#Laser power (J/s) / energy per photon (J/ph) * pulse time (s) * 10 pulses:
* (1/Eph) * pulse.time * 10 # Number of photons in 10 pulses: laser.pow
[1] 5.3563e+18
<- 2.14 # Work function in eV
Phi <- 300e-9 # Photon wavelength
lambda #lambda <- 600e-9 # The other Photon's wavelength
<- Phi * 1.602177e-19 # Convert Phi to Joules
PhiJ <- h * cl/lambda
Eph # Energy of the photon Eph
[1] 6.621486e-19
<- Eph - PhiJ
KEe # KE of the kicked out e- KEe
[1] 3.192827e-19
<- 3.84 # Work function in eV
Phi <- 170e-12 # Photon wavelength
lambda #lambda <- 170e-6 # Photon wavelength
<- 9.1093837015e-31 # Mass e-
me
<- Phi * 1.602177e-19 # Convert Phi to J
PhiJ <- h * cl/lambda
Eph
# KE of the kicked out e-
<- Eph - PhiJ
KEe KEe
[1] 1.167882e-15
# Speed of the kicked out e-
<- sqrt(2*(Eph - PhiJ)/me)
ve ve
[1] 50637242
# 1e- accelerated by 134V
# 1V = 1J/C
<- 134 * ec # ec = charge of an electron in Coulombs
Eelec # energy of an electron accelerated through 134V potential Eelec
[1] 2.146917e-17
# From E=hc/lambda and p=h/lambda:
<- Eelec/cl
pelec # momentum of the electron pelec
[1] 7.161343e-26
<- 4 # Fringe index
n <- 0.5e-3 # Slit spacing
d <- 3.3 * pi/180 # Angle
theta
# a. n lambda = d sin(theta)
<- d*sin(theta)/n
lambda # wavelength in m lambda
[1] 7.195503e-06
*1e9 # wavelength in nm lambda
[1] 7195.503
# b. E = hc/lambda
<- h*cl/lambda
E # energy in J E
[1] 2.760677e-20
# c. p = h/lambda
<- h/lambda
p # momentum in kg m/s p
[1] 9.208626e-29
# d. p = mv
<- 100
v <- p/v
m # mass in kg m
[1] 9.208626e-31
<- 150e-12
dx <- hb/(2*dx)
dp # minimum uncertainty in momentum dp
[1] 3.515239e-25
<- dp/me
dv # minimum uncertainty in speed dv
[1] 385892.1
<- 1e-9
dt <- hb/(2*dt)
dE dE
[1] 5.272859e-26
<- planck.distribution(x.min = 0.1e-9, x.max = 200000e-9, Temp = 100, typ = "wavelength", plotQ = T) k100
<- planck.distribution(x.min = 0.1e-9, x.max = 200000e-9, Temp = 1000, typ = "wavelength", plotQ = T) k1000
<- planck.distribution(x.min = 0.1e-9, x.max = 200000e-9, Temp = 10000, typ = "wavelength", plotQ = T) k10000